Пособие по практике программирования


"О большое"


Мы описывали трудоемкость алгоритма в зависимости от п, количества входных элементов. Поиск в неотсортированных данных занимает время, пропорциональное п; при использовании двоичного поиска по отсортированным данным время будет пропорционально log п. Время сортировки пропорционально n2 или n logn.

Нам нужно как-то уточнить эти высказывания, при этом абстрагируясь от таких деталей, как скорость процессора и качество компилятора (и программиста). Хотелось бы сравнивать время работы и затраты памяти алгоритмов вне зависимости от языка программирования, компилятора, архитектуры компьютера, скорости процессора, загруженности системы и других сложных факторов.

Для этой цели существует стандартная форма записи, которая называется "О большое". Основной параметр этой записи — п, размер входных данных, а сложность или время работы алгоритма выражается как функция от п. "О" — от английского order, то есть порядок. Например, фраза "Двоичный поиск имеет сложность 0(log n)" означает, что для поиска в массиве из п элементов требуется порядка log n действий. Запись О(f(n)) предусматривает, что при достаточно больших п время выполнения пропорционально f(n), не быстрее, например, О(n2) или 0(n log n). Асимптотические оценки вроде этой полезны при теоретическом анализе и грубом сравнении алгоритмов, однако на практике разница в деталях может иметь большое значение. Например, алгоритм класса 0(n2) с малым количеством дополнительных вычислений для малых п может работать быстрее, чем сложный алгоритм класса О(n logn), однако при достаточно большом п алгоритм с медленнее возрастающей функцией поведения неизбежно будет работать быстрее.

Нам нужно различать также случаи наихудшего и ожидаемого поведения. Трудно строго определить, что такое "ожидаемое" поведение, потому что определение зависит от наших предположений о возможных входных данных. Обычно мы можем точно указать самый плохой случай, хотя иногда и здесь можно ошибиться. Для quicksort в самом плохом случае время работы растет как О(n2), а среднее ("ожидаемое") время — как О(n log n).




- Начало -  - Назад -  - Вперед -